Bort I think the same effect can be seen with books too. Take a normal rectangleshaped book. There are three basic axes of rotation: the one that goes top to bottom, the one that goes left to right, and the one that goes front to back. If you toss the book in the air and spin it along the toptobottom or fronttoback axes, it wobbles in the air a tiny bit; but if you try to spin it along the lefttoright axis, it's going to spin all unpredictably.
It's been 30 years since I did the math on this, but the basic deal is, on the largest and smallest moments of inertia*, any small motion on the other axes results in a sinewave wobble; while on the middle moment of inertia*, those small motions throw the whole system increasingly out of whack.
*: Moment of inertia: think of it like the crosssection as the book rotates. Like for the lefttoright axis, look at the spine of the book. You get the smallest cross section with the toptobottom axis  look down at the top surface of the book  while you get the biggest cross section with the fronttoback axis, looking at the front of the book like a normal person.


Mr. Purple Cat Esq. You may find this interesting
https://mathoverflow.net/questions/81960/thedzhanibekoveffec tanexerciseinmechanicsorfictionexplainmathemat



Oscar Wildcat Depends what the book said, but about the general idea, quite serious. The system most studied is a drop being bounced above a liquid surface. The resulting wave/particle interacts with other drops and the environment just as individual quanta do. It's a physical analog to the De Broglie pilot wave.


Oscar Wildcat Yes, well that is crazy nonsense, of which there is no end of.
Here is what I am talking about. Pilot waves for dummies.
https://www.youtube.com/watch?v=WIyTZDHuarQ
For the more erudite.
https://youtu.be/nmC0ygr08tE
http://math.mit.edu/~bush/wordpress/wpcontent/uploads/2013/10 /GalleryHarris2013.pdf

Register or login To Post a Comment 